Synthesis, Properties, and Multinuclear (¹H, ¹³C, ⁷⁷Se) Magnetic Resonance Studies of the Hybrid Selenide Ligands o-C₆H₄(SeMe)Y (Y = NMe₂, PMe₂, AsMe₂, SbMe₂, OMe, and SMe)

Eric G. Hope, Tim Kemmitt, and William Levason* Department of Chemistry, The University, Southampton SO9 5NH

> The reaction of *o*-bromophenyl methyl selenide with lithium dimethyl-phosphide, -arsenide, and -antimonide gave the seleno-phosphine $o - C_6H_4$ (SeMe) PMe₂(2), -arsine $o - C_6H_4$ (SeMe)AsMe₂ (3), and -stibine $o - C_6H_4$ (SeMe)SbMe₂ (4) respectively. The seleno-amine $o - C_6H_4$ (SeMe) (NMe₂) (7), -ether $o - C_6H_4$ (SeMe)OMe (5), and -sulphide $o - C_6H_4$ (SeMe)SMe (6) were obtained from methaneselenenyl bromide and RMgBr [R = $o - C_6H_4$ (OMe), $o - C_6H_4$ (NMe₂)] or $o - C_6H_4$ (SMe)Li. The bis-selenide $o - C_6H_4$ (SeMe)₂ (8) is conveniently prepared from the polymeric selenide $- (o - SeC_6H_4Se)_{,r}$, NaO₂SCH₂OH, and Mel. The o-substituted selenides have been characterised by mass spectrometry, ¹H, ¹³C, and ⁷⁷Se n.m.r. spectroscopy, and for compounds (2), (3), (4), and (8) by the preparation of quaternary derivatives. The trends in the ⁷⁷Se n.m.r. chemical shifts and coupling constants are discussed.

We have recently shown that the ⁷⁷Se chemical shifts and onebond coupling constants (${}^{1}J_{M-Se}$) (M = Pt, Rh) of platinum metal bis-selenide complexes are sensitive parameters which respond in predictable ways to changes in the ligand geometry, substituents, chelate ring size, metal oxidation state, and *trans* ligand.¹⁻³ Bis-selenides are only moderate donors and this restricts the range of metal centres with which they produce stable complexes. In order to extend these studies to harder 3d metals, we report here the synthesis and detailed spectroscopic data on a series of hybrid bidentate ligands of general structure (1) in which the selenide group is combined with stronger σ -donors such as PMe₂ or AsMe₂.

The phosphine-selenide hybrids $o - C_6 H_4 (PPh_2)(SeMe)$ and $P(o - C_6 H_4 SeMe)_3$ were reported some years ago.⁴

Results and Discussion

The syntheses of hybrid bidentate ligands involve the sequential attachment of the donor groups to the ligand backbone.⁵ The intermediate *o*-bromophenyl methyl selenide $o-C_6H_4Br(SeMe)$

Scheme 1. Reagents: i, KSeCN-MeI; ii, LiPMe₂-THF; iii, NaAsMe₂-THF; iv, NaSbMe₂-liquid NH₃

is readily prepared from $o-C_6H_4Br(NH_2)$, KSeCN, and iodomethane (Scheme 1). Heavy group VB donor groups are most readily introduced via the anions ER_2^- (E = P, As, Sb)⁶ and the reaction of $o-C_6H_4Br(SeMe)$ with PMe_2^- or $AsMe_2^$ in tetrahydrofuran (THF), or SbMe₂⁻ in liquid ammonia, produced compounds (2), (3), and (4), respectively (Scheme 1) as air-sensitive colourless liquids. The amino selenide (7) was prepared by two routes from $o-C_6H_4Br(NMe_2)$.⁶ Successive treatment of the latter with BuLi, Se, and MeI gave a poor yield (8%); other workers have observed only moderate yields of ArSeLi from ArLi and Se.^{7,8} A better yield was obtained from the reaction between $o-C_6H_4(NMe_2)MgBr$ and methaneselenenyl bromide MeSeBr (40%) (Scheme 2). Carbanions

Scheme 2. Reagents: i, Br_2 ; ii, $o-C_6H_4(MgBr)OMe$; iii, $o-C_6H_4(SMe)Li$; iv, $o-C_6H_4(NMe_2)MgBr$

(R⁻) react directly with R'_2Se_2 to give RSeR' and R'Se⁻, ^{9,10} but this route incorporates a maximum of 50% of the selenium into the product and it also produces highly unpleasant selenols upon hydrolysis of the reaction mixture. As an alternative we used MeSeBr, prepared *in situ* in hexane from stoicheiometric amounts of Me₂Se₂ and Br₂, which was treated directly with the carbanion. Similar routes using $o-C_6H_4(OMe)MgBr$ and $o-C_6H_4(SMe)Li^{11}$ and MeSeBr gave compounds (5) and (6).

The bis-selenide (8) has been prepared previously by the addition of Me_2Se_2 to benzyne,¹² although much biphenylene is also obtained. An alternative preparation is

shown in Scheme 3. The poly-o-phenylenediselenide $-(o-SeC_6H_4Se)-_n$, obtained ^{13,14} from $o-C_6H_4Br_2$ and Na_2Se_2 in dimethylformamide, is cleaved by hydroxymethanesulphinic acid sodium salt (Rongalite, NaO_2SCH_2OH) to the dianion $o-C_6H_4(Se)_2^{2-}$ and this is alkylated with MeI. This reaction constitutes a convenient route for compounds of the type $o-C_6H_4(SeR)_2$ (R = alkyl). Attempts to cleave the polymer with NaBH₄-EtOH or LiAlH₄-THF followed by alkylation with MeI were unsatisfactory for reasons which are unclear.

Scheme 3. Reagents: i, Na2Se2-DMF; ii, Rongalite; iii, MeI

Properties.—The selenides (2)—(8) are colourless or very pale yellow liquids; compounds (5), (6), (7), and (8) are air stable, but (2), (3), and (4) oxidise rapidly at the group VB atom on exposure to air. Mass spectra were recorded to confirm the identity and constitution of the products; prominent peaks are listed in the Experimental section.

The presence of six natural isotopes of selenium (⁷⁴Se, 0.87%; ⁷⁶Se, 9.02%; ⁷⁷Se, 7.58%; ⁷⁸Se, 23.52%; ⁸⁰Se, 49.82%; ⁸²Se, 9.19%) leads to highly characteristic groups of peaks for the selenium-containing ions, but complicates analysis of overlapping peaks. The fragmentation patterns of the selenides (2)— (8) were generally as expected for 1,2-disubstituted benzenes containing groups VB or VIB groups. ^{6,12,15-17} Thus (2), (3), and (4) show prominent parent ions (M^+) and ions resulting from successive losses of three methyl groups, with (M^+ – Me) as the base peak in each case. The fragmentation of compound (7) is similar, but also shows that the ions corresponding to $(M^+ - Me)$ lose one and then two further hydrogen atoms; a feature also observed in the spectra of $o - C_6 H_4 (NMe_2)_2^{15}$ and PhNMe₂,¹⁸ attributable to the formation of ions containing $(-N=CH)_2^+$ and $(-N=CH)^+$ units. The mass spectrum of *o*-diphenylphosphinophenyl methyl selenide has $(M^+ - Me)$ as the base peak and prominent ions at m/z 356 (M^+) , 183 $(C_{12}H_8P)$, 152 $(C_{12}H_8)$, 107 (C_6H_4P) , and 91 (C_7H_7) – again similar to $o - C_6H_4(PPh_2)Y$ molecules.¹⁶

For $o-C_6H_4(OMe)(SeMe)$, the parent ion is also the base peak, and $(P - Me)^+$ and $(C_6H_4OMe)^+$ are the major fragments. The mass spectra of $o-C_6H_4(SeMe)_2$ (8)¹² and $o-C_6H_4(SMe)_2^{17}$ have been reported and that of $o-C_6H_4(SMe)_2$ (SeMe) (6) is much as expected, and in particular the presence of an ion at m/z 123 corresponding to cleavage of SeMe from the parent ion, and the absence of a similar (M^+ – SMe) ion reflects the relative C–Se and C–S bond strengths.

Compounds (2), (3), (4), and (8) were also characterised by the preparation of quaternary derivatives (see the Table). Compounds (2), (3), and (4) formed monomethiodide derivatives on heating with an excess of MeI in ethanol or acetone, the ¹H n.m.r. spectra confirming the group vB atom as the site of quaternisation. Aryl(alkyl)selenides generally do not react with MeI under these conditions,¹⁹ but upon heating compound (8) with dimethyl sulphate under more forcing conditions, the diselenonium salt was obtained.

N.m.r. Spectra.—The ¹H n.m.r. spectra (see the Table) were unexceptional with δ_{MeSe} ca. 2.3 and ${}^{2}J_{Se-H}$ ca. 12 Hz. Quaternisation of the heteroatom *ortho* to the SeMe group has little or no effect on the δ_{MeSe} resonance, but in the selenonium salt of (8) δ_{Me_2Se} lies at 3.0, ${}^{2}J_{Se-H}$ 9.5 Hz. For compounds (2), (3), (4), (6), and (8) the ${}^{13}C{}^{1}H{}$ spectra show δ_{MeSe} at 7.0—8.5, ${}^{1}J_{Se-C}$ ca. 65—70 Hz, but in compounds (7) and (5) the resonance occurs at ca. 4.4—4.6 p.p.m., while ${}^{1}J_{Se-C}$ is not significantly changed.

Interestingly, in the ¹³C n.m.r. spectrum of o-C₆H₄(Se-Me)PPh₂, the SeMe resonance is a doublet with ⁴J_{P-C} 10.6 Hz, whereas in o-C₆H₄(SeMe)PMe₂ only a sharp singlet (line width <2 Hz) is observed. The aromatic carbon resonances in the ¹³C n.m.r. spectra are not readily assigned, and the *ipso* carbon resonance was often too weak to measure ¹J_{Se-C} (cf. ref 12). The ³¹P{¹H} n.m.r. spectra of compound (2) and o-C₆H₄(SeMe)PPh₂ (see the Table) are very similar to those of the

Compd.	¹ H N.m.r./p.p.m. ^a		$^{13}C{^{1}H}/p.p.m.^{b}$			
	δ _{MeSe}	δ _{ΜeE}	δ _{MeSe}	δ _{ΜeE}	⁷⁷ Se{ ¹ H}/p.p.m. ^c	$^{31}P{^{1}H}/p.p.m.^{d}$
ρ -C _c H ₄ (SeMe)(NMe ₂)	2.2 (12.9)	2.7(s)	4.6 (66)	44.6(s)	173	
$o-C_{\epsilon}H_{4}(SeMe)(PMe_{2})$	2.21 (11.8)	1.18(d) (2.5)	7.9 (70)	14.5(d) $({}^{1}J_{PC} 13.3)$	201	-46.3
$o-C_{\epsilon}H_{4}(SeMe)(AsMe_{2})$	2.49 (11.6)	1.4(s)	8.2 (66.5)	10.6(s)	187	
$o-C_6H_4(SeMe)(SbMe_2)$	2.3 (12.0)	0.95(s)	7.7 (66)	10.3(s)	221.5	
o-C ₆ H ₄ (SeMe)(OMe)	2.2 (11.7)	3.8(s)	4.4 (65)	55.5(s)	148.5	
o-C ₆ H ₄ (SeMe)(SMe)	2.25 (11.6)	2.4(s)	7.0 (66)	17.0(s)	185	
$o-C_6H_4(SeMe)_2$	2.26 (11.7)	.,	8.0 (64.5)	• •	200	
o-C ₆ H ₄ (SeMe)Br	2.3 (12.3)		7.1 (66.0)		228	
$o-C_6H_4(SeMe)(PPh_2)$	2.25 (12.0)		$8.5(d)$ (⁴ J_{PC} 10.6)		189(d) $({}^{3}J_{PSe}$ 158)	-10.7
o-C ₆ H ₄ (SeMe)(PMe ₃)I	2.3 (12.0)	2.0(d) (6)			205	+ 29.4
o-C ₆ H ₄ (SeMe)(AsMe ₃)I	2.4 (12.0)	2.2(s)			207	
o-C ₆ H ₄ (SeMe)(SbMe ₃)I	2.4 (11.0)	1.9(s)			240	
ρ -C ₄ H ₄ (SeMe ₂) ₂ (MeSO ₄) ₂ ^e	3.0 (9.5)		27.3 (55)		348.5	

^a In CDCl₃ relative to internal SiMe₄; also aromatics δ 6.9—7.6 (²J_{seH}/Hz in parenthesis). ^b In CDCl₃ relative to internal SiMe₄; also aromatics δ 123—136; individual resonances not assigned. ¹J_{seC}/Hz in parentheses on δ_{MeSe} values. ^c In CDCl₃ relative to external Me₂Se, high frequency positive convention. ^a In CDCl₃ relative to external 85% H₃PO₄, high frequency position convention. ^e δ_{H} 3.25(s), δ_{C} 52.7 in MeOSO₃⁻.

Table. ¹H, ¹³C, and ⁷⁷Se n.m.r. data

sulphide analogues $o - C_6 H_4(SMe) PMe_2$ ($\delta - 46.7$)⁶ and $o - C_6 H_4(SMe)(PPh_2)$ ($\delta - 13.8$).

Previous studies 20,21 of para- and meta-substituted methyl phenyl selenides have found a correlation between the ⁷⁷Se chemical shift $[\delta_{se}]$ and the Hammett σ constant of the aromatic substituent, but for *ortho*-substituted derivatives the δ_{se} values are irregular and the range larger. Thus the δ_{se} values given in the Table range from 148.5 [compound (5)] to 228 (obromophenyl methyl selenide) to which the literature values¹⁹ for $o - C_6 H_4$ (SeMe)Y [Y = H δ 202; Y = Cl δ 201; Y = Me δ 162] could be added. Three effects may influence the δ_{se} values in these ortho substituted methyl phenyl selenides: (i) an electronic effect of the substituent transmitted through the aromatic ring, (ii) a steric effect in which the o-substituent influences the tendency of the SeMe group to lie in the plane of the ring and hence affects the π -interaction between the selenium lone pairs and the benzene π -system,²⁰ and (*iii*) direct interaction 'through space' between the mutually ortho groups which will depend both upon the size and electronegativity of the substituent. Only (i) will contribute to δ_{se} in the meta- and para-substituted analogues, whilst the varying importance of (*i*)—(*iii*) could account for the lack of a clear pattern in δ_{se} for the ortho-analogues. It is interesting to consider the chemical shifts in the series $o-C_6H_4(PMe_2)Y$ (Y = H, OMe, NMe₂, PMe₂, AsMe₂, SbMe₂, SMe, or SeMe) which all lie at ca. -50 ± 5 p.p.m.,⁶ compared with *ca.* 80 p.p.m. range in the selenides described here. Allowing for the greater chemical shift range observed in ⁷⁷Se n.m.r. (ca. 3 000 p.p.m.) versus ³¹P (ca. 700 p.p.m.), it is still apparent that the varying influence of the o-Y substituent is markedly greater in the ⁷⁷Se n.m.r. spectra. A more detailed rationalisation of these trends must await further data, especially on the para- and meta-substituted analogues of the ligands in the Table.

o-Diphenylphosphinophenyl methyl selenide shows a large ${}^{3}J_{P-Se}$ coupling (158 Hz) whilst no similar coupling was resolved for compound (2), effects paralleling those in the ${}^{13}C$ n.m.r. spectra above. Quaternisation of the group VB atom in compounds (2), (3), or (4) deshields the selenium nucleus, shifting the δ_{Se} resonance to higher frequency by 4—20 p.p.m. – again in an irregular manner.

Conversion of o-C₆H₄(SeMe)₂ into o-C₆H₄(SeMe₂)₂²⁺ results in a larger high-frequency shift (148.5 p.p.m.). Co-ordination of these ligands to metal ions also results in large high frequency shifts in δ_{se} ; these studies will be reported elsewhere.

Experimental

Many organoselenium compounds have persistent repulsive odours and all synthetic work must be performed in a good fume cupboard. All syntheses were conducted under a dry nitrogen atmosphere. ¹H, ¹³C, and ⁷⁷Se n.m.r. spectra were recorded in CDCl₃ solutions on a Bruker AM 360 spectrometer,^{1,2} referenced to SiMe₄ (¹H, ¹³C) and Me₂Se (⁷⁷Se), using the high frequency positive convention. Other physical measurements were made as described previously.¹² Mass spectra; ions refer to ⁸⁰Se fragments, and intensities are uncorrected.

The preparations of $o-C_6H_4Br(SeMe)^4$ and $o-C_6H_4(PPh_2)-(SeMe)^4$ were conducted as described elsewhere.

Methaneselenenyl Bromide.—Bromine (4.0 g, 0.025 mmol) was dissolved in dry hexane (75 cm^3) and the solution was added dropwise to a stirred solution of Me₂Se₂ (4.7 g, 0.025 mol) in hexane (100 cm³) at 0 °C. The reagent, stored at 0 °C, was used within 2 h of preparation.

o-Dimethylaminophenyl Methyl Selenide (7).—Method 1. (o-Bromophenyl)dimethylamine (10 g, 50 mmol) in a mixture of dry diethyl ether (50 cm³) and dry hexane (50 cm³) was treated with butyl-lithium (1.4M solution in hexane; 35.7 cm³) with vigorous stirring at 0 °C. The mixture was stirred for an additional 30 min as elemental selenium (4 g, 50 mmol) was added in several aliquots after which the mixture was allowed to stir for a further hour. Iodomethane (7.1 g, 50 mmol) was then added dropwise, and the mixture briefly heated to reflux, cooled to room temperature, and hydrolysed with water (100 cm³).

The organic layer was separated and dried (MgSO₄) for 16 h. The solvent was removed by distillation, the residue fractionated under reduced pressure to yield a yellow oil (0.9 g, 8.3%), b.p. 60 °C/0.3 Torr, m/z 215 [(C₉H₁₃NSe⁺) 16%], 200 (10), 199 (8), 198 (10), 185 (8), 184 (9), 183 (8), 120 (24), and 91 (100) (Found: C, 50.7; H, 6.0; N, 6.5. C₉H₁₃NSe requires C, 50.5; H, 6.1; N, 6.5%).

Method 2. This was a similar route to that described for compound (5), using the Grignard reagent from (o-bromophenyl)dimethylamine and MeSeBr (40% yield).

Dimethyl-(o-methylselenophenyl)phosphine (2).—A solution of LiPMe₂ in tetrahydrofuran (100 cm³) was made from lithium (1 g, 0.14 mol) and PMe₂Ph (6.5 g, 0.047 mol) as described.⁶ The dark red solution was added dropwise to o-C₆H₄Br(SeMe) (8.8 g, 0.035 mol) in THF (150 cm³) until the red colour was no longer discharged. The resulting solution was stirred for 1 h, heated to reflux, cooled, and hydrolysed with aqueous ammonium chloride (100 cm³). The organic phase was separated, dried (Na₂SO₄), and the solvent removed by distillation. Fractionation of the residue under reduced pressure, gave the product (2) (3 g, 30%), b.p. 115 °C/2 Torr, m/z 232 [(C₉H₁₃PSe⁺)9%], 215 (100), 200 (60), 156 (33), and 91 (50).

The monomethiodide o-C₆H₄(SeMe)(PMe₃)I was obtained by refluxing the phosphine (2) (0.23 g, 1 mmol) and MeI (0.71 g, 5 mmol) in acetone (50 cm³) for 3 h. The solution was concentrated to *ca*. 10 cm³ under reduced pressure, cooled, and the resulting white crystalline precipitate filtered off, rinsed with diethyl ether, and dried (0.34 g, 91%), m.p. 268 °C (Found: C, 32.2; H, 4.2. C₁₀H₁₆IPSe requires C, 32.2; H, 4.3%).

Dimethyl-(o-methylselenophenyl)arsine (3).—Sodium dimethylarsenide in THF (200 cm³) was prepared from sodium wire (3.2 g, 0.14 mol) and iododimethylarsine (27.4 g, 0.12 mol),⁶ and was added dropwise to o-bromophenyl methyl selenide (30 g, 0.12 mol) in THF (100 cm³). The mixture was stirred for 30 min, hydrolysed, and the organic phase separated and dried (Na₂SO₄). The solvent was distilled off, and the residue was fractionated under reduced pressure to give the arsine (3) (10.8 g, 33%), b.p. 100 °C/1 Torr, m/z 276 [(C₉H₁₃AsSe)⁺ 26%], 261 (100), 246 (24), 231 (28), 156 (30), and 91 (59).

The monomethiodide was prepared as described for compound (2) (67% yield) (Found: C, 29.1; H, 3.7. $C_{10}H_{16}AsISe$ requires C, 28.8; H, 3.8%).

Dimethyl-(o-methylselenophenyl)antimonide (4).—Sodium (3.45 g, 0.15 mol) was dissolved in liquid ammonia (300 cm³) and Me₃SbBr₂ (14 g, 0.04 mol) was added in several aliquots over 30 min. The solution was stirred for 3 h during which time it turned deep red, and then treated with dry ammonium chloride (2.1 g, 0.04 mol).⁶ The liquid ammonia solution was then added dropwise to a solution of $o-C_6H_4Br(SeMe)$ (9.3 g, 0.037 mol) in dry THF (150 cm³) cooled to $-78 \,^{\circ}C$. The mixture was stirred for a further 1 h, allowed to warm to room temperature, and then worked up as for compound (3). Fractionation gave *the antimonide* (4) as a colourless air sensitive oil (1.3 g, 11%), b.p. 86 $^{\circ}C/0.3$ Torr, m/z 322 [(C₉H₁₃SeSb)⁺ 12%], 307 (100), 292 (38), 277 (33), 201 (32), and 91 (88).

The monomethiodide was prepared as for compound (3) and

was recrystallised from acetone, m.p. 160 °C (Found: C, 25.8; H, 3.5. $C_{10}H_{16}$ ISbSe requires C, 25.9; H, 3.5%).

o-Methoxyphenyl Methyl Selenide (5).—To magnesium turnings (1.32 g, 0.055 mol) in dry diethyl ether (150 cm³) was added dropwise o-bromoanisole (8.35 g, 0.050 mol) in dry diethyl ether (50 cm³), over 30 min, with vigorous stirring, to give a clear solution. This was added slowly by transfer tube to methaneselenenyl bromide (50 mmol) in hexane (175 cm³), prepared and used *in situ* at 0 °C. The mixture was refluxed briefly, cooled to room temperature, and hydrolysed with water (100 cm³). The organic layer was separated and dried (MgSO₄) for 16 h. The solvent was removed by distillation and the residue fractionated under reduced pressure to yield a pale yellow oil (2.5 g, 25%), b.p. 85 °C/0.3 Torr (lit.,²² 78 °C/0.3 Torr) (Found: C, 47.6; H, 4.8. Calc. for C₈H₁₀OSe: C, 47.8; H, 5.0%); *m/z* 202 [(C₈H₁₀OSe)⁺ 100%], 187 (15), 157 (21), 107 (96), and 91 (36).

Methyl o-Methylthiophenyl Selenide (6).—o-Bromothioanisole (10.2 g, 0.05 mol) in dry diethyl ether (50 cm³) and dry hexane (50 cm³) was treated dropwise at 0 °C with butyllithium (1.4m, 35.7 cm³) in hexane. The mixture was stirred at 0 °C for 1 h and then added to MeSeBr (0.05 mol) prepared as above. The resulting mixture was heated briefly to reflux, cooled, and worked up in the usual way. Fractionation gave the selenide (3.5 g, 32%), b.p. 89 °C/0.3 Torr (lit.,²³ 78 °C/0.5 Torr) (Found: C, 44.0; H, 4.6. Calc. for C₈H₁₀SSe: C, 44.2; H, 4.6%); m/z 218 [(C₈H₁₀SSe)⁺ 43%], 203 (22), 123 (13), 108 (24), and 91 (100).

1,2-Bis(methylseleno)benzene (8).—Sodium ethoxide [from Na (0.92 g, 0.04 mol], sodium hydroxymethanesulphinate (3.1 g, 0.02 mol), sodium hydroxide (2 g), and poly-(o-diselenobenzene)¹⁴ (2.34 g, 0.01 mol) were added successively to ethanol (120 cm³) and the mixture was heated at *ca*. 50 °C for 15 min, when a colourless solution was produced. Iodomethane (2.48 g, 0.02 mol) was added dropwise and the mixture refluxed overnight. After the reaction had been cooled to room temperature, the mixture was hydrolysed with saturated brine (100 cm³) and extracted with diethyl ether (100 cm³). The organic extract was washed with saturated aqueous NaHCO₃ and brine and dried (Na₂SO₄). The solvent was distilled off and fractionation of the residue under reduced pressure gave *bisselenide* (8) (1.25 g, 53%) (Found: C, 36.3; H, 3.8. C₈H₁₀Se₂ requires C, 36.4; H, 3.8%).

The *bis(methylsulphonate)* was prepared by gentle heating of compound (8) with an excess of Me₂SO₄, and was recrystallised from acetone, m.p. 159 °C (Found: C, 27.6; H, 4.2. $C_{12}H_{22}O_8S_2Se_2$ requires C, 27.9; H, 4.3%).

Acknowledgements

We thank the S.E.R.C. for support and Mrs. J. M. Street for the 13 C n.m.r. spectra.

References

- 1 D. J. Gulliver, E. G. Hope, W. Levason, S. G. Murray, and G. L. Marshall, J. Chem. Soc., Dalton Trans., 1985, 1265.
- 2 E. G. Hope, W. Levason, and S. G. Murray, J. Chem. Soc., Dalton Trans., 1985, 2185.
- 3 E. G. Hope, W. Levason, M. Webster, and S. G. Murray, J. Chem. Soc., Dalton Trans., 1986, 1003.
- 4 G. Dyer and D. W. Meek, *Inorg. Chem.*, 1967, **6**, 149; *J. Am. Chem. Soc.*, 1967, **89**, 3983.
- 5 C. A. McAuliffe and W. Levason, 'Phosphine, Arsine and Stibine Complexes of the Transition Elements,' Elsevier, Amsterdam, 1978, ch. 1.
- 6 W. Levason, K. G. Smith, C. A. McAuliffe, F. P. McCullough, R. D. Sedgwick, and S. G. Murray, J. Chem. Soc., Dalton Trans., 1979, 1718.
- 7 J. E. Drake and R. T. Hemmings, J. Chem. Soc., Dalton Trans., 1976, 1730.
- 8 'Organic Selenium Compounds,' eds, D. L. Klayman and W. H. Gunther, Wiley, New York, 1973, ch. 4.
- 9 K. Hiroi, H. Miura, K. Kotsuji, and S. Sato, *Chem. Lett.*, 1981, 559. 10 R. V. Honeychuck, M. O. Okoroafor, L.-H. Shen, and C. H.
- Brubaker, Jr., Organometallics, 1985, 5, 482.
- 11 D. W. Meek, G. Dyer, and M. O. Workman, *Inorg. Synth.*, 1976, 16, 168.
- 12 D. J. Gulliver, E. G. Hope, W. Levason, S. G. Murray, D. M. Potter, and G. L. Marshall, J. Chem. Soc., Perkin Trans. 2, 1984, 429.
- 13 D. J. Sandman, J. C. Stark, L. A. Acampora, and P. Gagne, Organometallics, 1983, 2, 549.
- 14 D. J. Sandman, J. C. Stark, M. Rubner, G. P. Hamill, L. A. Acampora, L. A. Samnelson, M. A. McGrath, and G. W. Allen, Proc. Int. Conf. Org. Chem. Selenium, Tellurium, 4th, 1983, 637–670 (Chem. Abstr., 1985, 102, 220183 b).
- 15 K. Henrick, D. L. Kepert, E. Shewchuck, K. R. Trigwell, and S. B. Wild, Aust. J. Chem., 1974, 27, 727.
- 16 W. Levason, C. A. McAuliffe, and S. G. Murray, J. Organomet. Chem., 1975, 84, 239.
- 17 C. A. McAuliffe, F. P. McCullough, R. D. Sedgwick, and W. Levason, Inorg. Chim. Acta, 1975, 14, 49.
- 18 J. H. Benyon, R. A. Saunders, and A. E. Williams, 'The Mass Spectra of Organic Molecules,' Elsevier, New York, 1968, p. 271.
- 19 Ref. 8, ch. 6.
- 20 W. McFarlane and R. J. Wood, J. Chem. Soc., Dalton Trans., 1972, 1397.
- 21 A. Fredga, S. Gronowitz, and A. B. Hornfeldt, Chem. Scr., 1975, 8, 15.
- 22 N. Marziano and R. Passerini, Gazz. Chim. Ital., 1964, 94, 1137.
- 23 D. M. Roundhill, S. G. N. Roundhill, W. D. Beaulieu, and U. Bagchi, *Inorg. Chem.*, 1980, **19**, 3365.

Received 27th May 1986; Paper 6/1034